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Abstract. We investigate the roots of relative Steiner polynomials of
convex bodies. In dimension 3 we give a precise description of their
location in the complex plane and we study the analogous problem in
higher dimensions. In particular, we show that the roots (in the up-
per half plane) form a convex cone; for dimensions ≤ 9 this cone is
completely contained in the (open) left half plane, which is not true in
dimensions ≥ 12. Moreover, we characterize certain special families of
convex bodies by means of properties of their roots.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the n-
dimensional Euclidean space Rn, and let Bn be the n-dimensional unit ball.
The subset of Kn consisting of all convex bodies with non-empty interior
is denoted by Kn0 . The volume of a set M ⊂ Rn, i.e., its n-dimensional
Lebesgue measure, is denoted by vol(M). For two convex bodies K,E ∈ Kn
and a non-negative real number λ, the volume of the so called relative outer
parallel body of K with respect to E, K + λE, is expressed as a polynomial
of degree n in λ and it can be written as

(1.1) vol(K + λE) =
n∑
i=0

(
n

i

)
Wi(K;E)λi.

This expression is called Minkowski-Steiner formula or relative Steiner for-
mula of K. The coefficients Wi(K;E) are the relative quermassintegrals of
K, and they are a special case of the more general defined mixed volumes
for which we refer to [19, s. 5.1]. In particular, we have W0(K;E) = vol(K),
Wn(K;E) = vol(E) and Wi(K;E) = Wn−i(E;K). If E = Bn, (1.1) be-
comes the classical Steiner formula [20], and Wi(K;Bn), for short denoted
by Wi(K), is the classical i-th quermassintegral of K.
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In the following, E ∈ Kn0 will be always a fixed convex body with non-
empty interior, and for K ∈ Kn we will write

fK;E(z) =
n∑
i=0

(
n

i

)
Wi(K;E)zi

to denote the Steiner polynomial of K relative to E, regarded as a formal
polynomial in a complex variable z ∈ C. We are interested in the location
of the roots of fK;E(z). To this end let C+ = {z ∈ C : Im(z) ≥ 0} be the
set of complex numbers with non-negative imaginary part, and let

(1.2) R(n,E) =
{
z ∈ C+ : fK;E(z) = 0 for some K ∈ Kn

}
be the set of all roots of fK;E(z), K ∈ Kn, in the upper half plane.

Theorem 1.1. R(n,E) is a convex cone containing the non-positive real
axis.

By the isoperimetric inequality (cf. e.g., [19, p. 318]) it is easy to see
that in the plane, R(2, E) is exactly the non-positive real axis. In order to
describe the 3-dimensional cone we need the so called cap-bodies. A convex
body K ∈ Kn is called a cap-body of L ∈ Kn if K is the convex hull of
L and countably many points such that the line segment joining any pair
of these points intersects L. With this notation we can precisely describe
R(3, E) (see Figure 1).

Theorem 1.2. If E ∈ K3
0 is a cap-body of a planar convex body then

R(3, E) =
{
x+ yi ∈ C+ : x+

√
3 y ≤ 0

}
,

otherwise
R(3, E) =

{
x+ yi ∈ C+ : x+

√
3 y < 0

}
∪ {0}.
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Figure 1. Roots of 3-dimensional Steiner polynomials in the
upper half plane.

In particular, we note that the set R(2, E), as well as the closure of
R(3, E), are independent of the gauge body E. It seems to be quite likely
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that this holds true in any dimension. Our result is restricted to dimen-
sion 3 since in higher dimension we do not have enough information about
the so called “complete system” of inequalities among the quermassinte-
grals (cf. e.g., [6, Problem 6.1]). We also do not know whether in general
R(n,E) ⊆ R(n+1, E) or whether for particular gauge bodies (e.g. E = Bn)
the cone is always half open as in the case n = 3.

The property that all the roots of 3-dimensional Steiner polynomials lie
in the left half plane was part of a conjecture posed by Sangwine-Yager
[17] (cf. e.g., [18, p. 65]) which was motivated by a problem of Teissier [21].
There it was in particular claimed that Steiner polynomials are “weakly”
stable polynomials, i.e.,

R(n,E) ⊆
{
z ∈ C+ : Re(z) ≤ 0

}
.

This inclusion is known to be true for dimensions ≤ 5 (cf. e.g., [21]), but
in [7] it was shown to be false in dimensions ≥ 12 for a special family of 3-
tangential bodies (see also [13] for another family of high dimensional convex
bodies with this property). Here we narrow the gap between these values of
the dimension by showing the following result.

Proposition 1.1.
i) For n ≤ 9 we have R(n,E) ⊆

{
z ∈ C+ : Re(z) < 0

}
∪ {0}.

ii) For n ≥ 12 we have
{
z ∈ C+ : Re(z) ≤ 0} ⊂ R(n,E).

For further information on the roots of Steiner polynomials in the context
of Teissier’s problem we refer to [7, 8, 10, 11, 13].

Next we consider the problem to characterize convex bodies by properties
of the roots of their Steiner polynomials. To this end we denote by

r(K;E) = max{r ≥ 0 : ∃x ∈ Rn with x+ r E ⊆ K}
the inradius of K ∈ Kn with respect to E. If E = Bn then r(K;Bn), for
short r(K), is the classical inradius, i.e., the radius of a largest Euclidean
ball contained in K. It is easy to check that for an l-dimensional convex
body L ∈ Kn, the Steiner polynomial of K = L + rBn has the (n − l)-fold
root −r = −r(K). We believe that those bodies are completely characterized
by this property.

Conjecture 1.1. Let K ∈ Kn and let l ∈ {0, . . . , n − 1}. Then −r(K) is
an (n − l)-fold root of fK;Bn(z) if and only if K = L + r(K)Bn for some
L ∈ Kn with dimL = l.

The case l = 0 is known to be true (see [9]) and will also follow from a
more general statement in Section 3 (Proposition 3.2). The case l = n−1 is
related to a conjecture of Matheron [15] (see also [19, p. 212]) claiming that
Bn is a summand of K ∈ Kn, i.e., K = L+Bn for some L ∈ Kn, if and only
if the volume of the inner parallel body K ∼ λBn = {x ∈ K : x+λBn ⊆ K}
is given by the so called alternating Steiner polynomial, i.e.,

(1.3) vol(K ∼ λBn) = fK;Bn(−λ), λ ∈ (0, 1).
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In fact, this was conjectured by Matheron for any gauge body E ∈ Kn0 , not
only for Bn. Observe that for K ∈ Kn with r(K) = 1, (1.3) implies that
−r(K) is a root of fK;Bn(z). So far Matheron’s conjecture is only known to
be true in the case n = 2 (see [15]). Based on the equality case in Bonnesen’s
inequality, namely,

(1.4) W0(K;E)− 2W1(K;E)r(K;E) + W2(K;E)r(K;E)2 ≤ 0

with equality if and only if K = L+ r(K;E)E for dimL ≤ 1 (see [1, pp. 33–
36], [3]), we also see that Conjecture 1.1 is true for any gauge body E in
dimension 2. Regarding the “sausage” case l = 1 of the conjecture above we
are able to prove the following weakening.

Theorem 1.3. Let K ∈ Kn, n ≥ 2. Then −r(K) is an (n− 1)-fold root of
fK;Bn(z) and all its 2-dimensional projections onto any 2-dimensional linear
subspace have inradius r(K) if and only K is a sausage with inradius r(K),
i.e., there exists a line segment L such that K = L+ r(K)Bn.

We note that, for instance, cap-bodies of Bn (see Section 3 for the defi-
nition) have the property that all their 2-dimensional projections have the
same inradius as the body, namely, 1 = r(Bn). In the last section we show
that cap-bodies, as well as the more general class of p-tangential bodies,
can be characterized via the roots of their Steiner polynomials (see Propo-
sition 3.1 and Corollary 3.1). Moreover, we investigate the roots of Steiner
polynomials of constant width sets and obtain the following result.

Proposition 1.2. The roots of Steiner polynomials fK;Bn(z) of convex
bodies K of constant width b are symmetric with respect to −b/2, i.e.,
fK;Bn(z) = 0 if and only if fK;Bn(−z − b) = 0.

The paper is organized as follows. At the beginning of Section 2 we give
some preliminary results on properties of roots of Steiner polynomials, which
are then needed for the proofs of Theorems 1.1 and 1.2 and Proposition 1.1.
In Section 3 we provide the announced characterization of cap-bodies and p-
tangential bodies and we present the proofs of Theorem 1.3 and Proposition
1.2; both results will be consequences of more general statements.

2. On the location of the roots of Steiner polynomials

First we collect some properties on the behavior of the roots of Steiner
polynomials when we change a bit the involved bodies.

Lemma 2.1. Let γ be a root of the Steiner polynomial fK;E(z).

i) Let λ > 0. Then λ γ is a root of fλK;E(z).
ii) Let a ≥ 0. Then γ − a is a root of fK+aE;E(z).
iii) Let γ = x + yi with x < 0, and let 0 < ρ ≤ 1. Then x + (ρ y) i is a

root of fρK+x(ρ−1)E;E(z).
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Proof. By the homogeneity of the quermassintegrals we have Wi(λK;E) =
λn−i Wi(K;E) for i = 0, . . . , n, and hence fλK;E(z) = λn fK;E(z/λ), which
shows i). Since for any a, λ ≥ 0

vol(K + aE + λE) = vol
(
K + (a+ λ)E

)
=

n∑
i=0

(
n

i

)
Wi(K;E) (a+ λ)i,

we have fK+aE;E(z) = fK;E(a + z), which implies ii). Finally, iii) is just a
combination of ii) and i), since ρK+x(ρ−1)E = ρ

(
K+[x(ρ−1)/ρ]E

)
. �

Next we give the proof of Theorem 1.1.

Proof of Theorem 1.1. First we note that −1 is a root of the polynomial
fE;E(z) since in this case Wi(E;E) = W0(E;E) for all i = 1, . . . , n, and
thus fE;E(z) = W0(E;E)(z+1)n. Hence, by Lemma 2.1 i) the negative real
axis is contained in R(n,E). Next observe that also 0 is a root of fK;E(z)
for any K ∈ Kn with dimK < n, because in this case W0(K;E) = 0.
Together with Lemma 2.1 i) this shows that R(n,E) is a rayset, i.e., for
γ ∈ R(n,E) and any λ ≥ 0 we also have λ γ ∈ R(n,E). Hence, with
Lemma 2.1 ii) this shows that R(n,E) is a convex cone. In fact, given roots
γi = xi + yii ∈ R(n,E) of polynomials fKi;E(z), i = 1, 2, and ρ ∈ (0, 1),
we can construct a convex body M such that ργ1 + (1 − ρ)γ2 is a root of
fM ;E(z) as follows. SinceR(n,E) contains the non-positive real numbers but
no positive numbers, we may assume that not both roots are real numbers.
Let x1/y1 = max{xi/yi : yi > 0, i = 1, 2} and let µ = y1/

(
ρ y1 + (1− ρ) y2

)
.

By the choice of x1/y1 we have

ν = µ
(
ρ x1 + (1− ρ)x2

)
= y1

ρ x1 + (1− ρ)x2

ρ y1 + (1− ρ) y2
≤ x1,

since it is easy to see that the above function is increasing in ρ ∈ (0, 1).
So we know by Lemma 2.1 ii) that ν + y1i is a root of fK1+(x1−ν)E;E and
thus, by Lemma 2.1 i) ργ1 + (1− ρ)γ2 is a root of the Steiner polynomial of
M = (1/µ)

(
K1 + (x1 − ν)E

)
. �

In [7, Theorem 1.2, Remark 3.2] it was shown that for dimensions n ≥ 12
there exist convex bodies K such that some of the roots of fK;Bn(z) have
positive real part. The constructions of these so called 3-tangential bodies
of Bn can be easily generalized to an arbitrary gauge body E ∈ Kn0 . Hence
we know by Theorem 1.1 that, for n ≥ 12,{

z ∈ C+ : Re(z) ≤ 0
}
⊂ R(n,E),

which is the second statement in Proposition 1.1.
The first statement of this proposition describes a stability property of

Steiner polynomials. We recall that a real polynomial is said to be stable
if all its roots have (strict) negative real part. Hence, again on account
of Theorem 1.1, Proposition 1.1 i) says that for dimension n ≤ 9 Steiner
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polynomials are stable if we neglect for a moment the root 0. The main
ingredient in order to prove it are the inequalities

(2.1) Wi(K;E)2 ≥Wi−1(K;E)Wi+1(K;E), 1 ≤ i ≤ n− 1,

(2.2) Wi(K;E)Wj(K;E) ≥Wk(K;E)Wl(K;E), 0 ≤ k < i < j < l ≤ n,
particular cases of the Aleksandrov-Fenchel inequality (see e.g. [19, s. 6.3]).

Proof of Proposition 1.1. It remains to show part i). We know 0 is a root of
fL;E(z) if and only if dimL = l < n, and in this case we may write fL;E(z) =
zn−l

∑n
i=n−l

(
n
i

)
Wi(L;E)zi−n+l with Wi(L;E) > 0 for n− l ≤ i ≤ n. Hence

we have to show that all polynomials of the type
∑n

i=n−l
(
n
i

)
Wi(L;E)zi−n+l,

Wi(L;E) > 0 for n− l ≤ i ≤ n, 0 < l ≤ n ≤ 9, are stable.
For n ≤ 5 it was already pointed out by Teissier [21, p. 103] that inequal-

ities (2.1) and (2.2) guarantee that the Routh-Hurwitz criterion for stability
of polynomials (see e.g. [14, p. 181]) is fulfilled, and so it remains to consider
the case n ≥ 6.

Here we use the following stability criterion [16, Theorem 3] (see also an
independent proof in [12, Theorem 1]). A real polynomial f(z) =

∑n
i=0 ai z

i,
with ai > 0 for i = 0, . . . , n, is stable if ai−1ai+2 ≤ β aiai+1, i = 1, . . . , n−2,
where β ≈ 0.4655 is the only real solution of z(z + 1)2 = 1. Again it is easy
to check that (2.1) and (2.2) imply this criterion. �

So only in dimensions n = 10, 11 we do not know whether Steiner poly-
nomials can have roots with positive real parts. Obviously, by the convexity
of the set R(n,E) the existence of a root with positive real part also implies
the existence of a pure imaginary complex root. However, not all roots can
be of that type. More precisely

Proposition 2.1. There exists no convex body K ∈ Kn such that all roots of
fK;E(z) are imaginary pure complex numbers (excluding the real root always
existing in odd dimension).

Proof. Notice first that if dimK ≤ 1 then the Steiner polynomial is of degree
≤ 1 and there is nothing to prove. Thus we can assume that dimK ≥ 2.

For n even, let K ∈ Kn be a convex body such that all roots of fK;E(z)
are {±yj i, j = 1, . . . , n/2}, with yj ∈ R>0. Then we get

fK;E(z) = Wn(K;E)
n/2∏
j=1

(z2 + y2
j ),

which implies W2i+1(K;E) = 0 for all i = 0, . . . , (n − 2)/2. In particular,
Wn−1(K;E) = 0 and hence dimK = 0, which contradicts our assumption.

For n odd, let K ∈ Kn be a convex body such that the roots of fK;E(z)
are {−x,±yj i, j = 1, . . . , (n− 1)/2}, with x ≥ 0 and yj ∈ R>0. From

fK;E(z) = Wn(K;E)(z − x)
(n−1)/2∏
j=1

(z2 + y2
j )
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we get
(n−1)/2∑
j=1

y2
j =

(
n

2

)
Wn−2(K;E)
Wn(K;E)

, x

(n−1)/2∑
j=1

y2
j =

(
n

3

)
Wn−3(K;E)
Wn(K;E)

,

x = n
Wn−1(K;E)
Wn(K;E)

.

Thus we obtain the relation
3n
n− 2

Wn−2(K;E)Wn−1(K;E) = Wn(K;E)Wn−3(K;E).

For dimK ≥ 2 the left hand side in the above equality is positive, and since
it holds Wn−2(K;E)Wn−1(K;E) ≥ Wn(K;E)Wn−3(K;E) for all convex
bodies (cf. (2.2)), we get the desired contradiction. �

In Section 3 we will show a kind of generalization of the proposition above,
proving that all roots of fK;E(z) cannot lie on two symmetric parallel lines
of the form {x + yi : x = ± a}, except for the case of an n-fold real root
(Proposition 3.2).

Next we come to the proof of Theorem 1.2 in which we give a description
of the cone R(3, E) (see Figure 1).

Proof of Theorem 1.2. Let −a + bi ∈ C+ be a root of a Steiner polynomial
fK;E(z) for some K ∈ K3 and E ∈ K3

0. By Proposition 1.1 we may assume
that both a, b > 0 and we have to show that

√
3 b ≤ a. Moreover, let −c,

c ≥ 0, be the real root of fK;E(z). Then we have the identities
(2.3)

2a+c = 3
W2(K;E)
W3(K;E)

, a2+b2+2ac = 3
W1(K;E)
W3(K;E)

, c(a2+b2) =
W0(K;E)
W3(K;E)

.

Inequalities (2.1) for i = 2 and i = 1 yield in terms of a, b, c, respectively,

(2.4) (a− c)2 ≥ 3b2,

(2.5) (a2 − 3b2)c2 − 2a(a2 + b2)c+ (a2 + b2)2 ≥ 0.

The first one is equivalent to c ≤ a−
√

3 b or c ≥ a+
√

3 b. In the first case
we are done and so we are left with the case c ≥ a+

√
3 b. Suppose it would

be a <
√

3 b. Then the left hand side of (2.5) is a quadratic polynomial in
c with negative leading coefficient, and with zeros (a2 + b2)/(a−

√
3 b) and

(a2 +b2)/(a+
√

3 b). Thus, on account of c ≥ 0, inequality (2.5) is equivalent
to c ≤ (a2 + b2)/(a+

√
3 b). Hence we obtain the contradiction

a+
√

3 b ≤ c ≤ a2 + b2

a+
√

3 b
,

and therefore, a ≥
√

3 b. Thus we have shown the inclusion

R(3, E) ⊆
{
−a+ bi ∈ C+ :

√
3 b ≤ a

}
for any E ∈ Kn0 .
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Next we study the boundary, i.e., we suppose that we have
√

3 b = a. In this
case, (2.4) and (2.5) reduce to c(c−2a) ≥ 0 and c ≤ (2/3)a, respectively, be-
cause a > 0. Since c ≥ 0 we must have c = 0 and thus W0(K;E) = 0. Then,
in view of W1(K;E) > 0 this shows that dimK = 2. Moreover, by (2.3)
we find W2(K;E) = (2/3) aW3(K;E) and W1(K;E) = (4/9) a2W3(K;E),
and so

W2(K;E)2 −W1(K;E)W3(K;E) = 0.
Now it is known (see [2]) that the above equality holds if and only if E is a
cap-body of the 2-dimensional set K. Thus if E ∈ K3

0 is not a cap-body of a
planar set we have the inclusion R(3, E) ⊆

{
−a+ bi ∈ C+ :

√
3 b < a

}
∪{0}.

In order to conclude the proof of the theorem we have to show that for
any −a+ bi ∈ C+, with a >

√
3 b or a =

√
3 b, depending on the gauge body

E ∈ Kn0 , there exists K ∈ Kn such that fK;E(−a + bi) = 0. We have to
distinguish three cases. If b = 0 then we just have to consider K = aE for
a > 0 and any planar convex body for a = 0.

So let b > 0 and a >
√

3 b. Here we take a suitable dilate of a cap-body
of E. Indeed the complex roots of the Steiner polynomials of all possible
cap-bodies of E (see Remark 3.1 when k, n = 3) determine a continuous
parametrized curve(

− t+ 2
2(t2 + t+ 1)

,

√
3 t

2(t2 + t+ 1)

)
, for t ∈ (0, 1),

with limit points (−1, 0), (−1/2,
√

3/6) when t tends to 0 and 1, respectively
(see Figure 2). By Lemma 2.1 i) the complex number −a + bi will be the
root of the Steiner polynomial of some dilate of a cap-body of E.

Finally, let b > 0 and a =
√

3 b. Here E ∈ Kn0 has to be a cap-body of a
planar convex body K, and then a dilate of K itself will give the solution.
In fact, since E is a cap-body of K then vol(E) = W0(E;K) = W1(E;K) =
W2(E;K) ([19, p. 368, proof of Theorem 6.6.16]), and so noticing that
W0(K;E) = 0 we get

fK;E(z) = z

3∑
i=1

(
3
i

)
Wi(K;E)zi−1 = z

3∑
i=1

(
3
i

)
W3−i(K;E)zi−1

= z vol(E)(3 + 3z + z2),

with non-zero roots −3/2±
√

3/2 i. Lemma 2.1 i) concludes the proof. �

Just computing the roots of the Steiner polynomial of 4-dimensional cap-
bodies (see again Remark 3.1) we see that R(3, E) ⊂ R(4, E) strictly.

3. Characterizing convex bodies by properties of the roots

This section is devoted to characterize (families of) convex bodies by
means of properties of the roots. Here we will need the inequalities

(3.1) Wi(K;E) ≥ r(K;E)Wi+1(K;E), i ∈ {0, . . . , n− 1},
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which are a direct consequence of the monotonicity of the mixed volumes
(cf. e.g. [19, p. 277]), since, up to translations, r(K;E)E ⊆ K.

I. p-tangential bodies. A convex body K ∈ Kn containing E ∈ Kn0 is
called a p-tangential body of E, p ∈ {0, . . . , n− 1}, if each support plane of
K that is not a support plane of E contains only (p− 1)-singular points of
K. Here a boundary point x of K is said to be an r-singular point of K if
the dimension of the normal cone in x is at least n− r. For further charac-
terizations and properties of p-tangential bodies we refer to [19, Section 2.2].

So a 0-tangential body of E is E itself, 1-tangential bodies are just the
cap-bodies (see [19, p. 76]) and each p-tangential body of E is also a q-
tangential body for p < q ≤ n − 1. If K is a p-tangential body of E then
r(K;E) = 1, and the following result by Favard states a characterization of
n-dimensional p-tangential bodies in terms of the quermassintegrals:

Theorem 3.1 (Favard [5], [19, p. 367]). Let K,E ∈ Kn0 , E ⊆ K, and let
p ∈ {0, . . . , n− 1}. Then K is a p-tangential body of E if and only if

W0(K;E) = W1(K;E) = · · · = Wn−p(K;E).

This property may be rephrased in terms of the roots as follows where we
exclude the trivial case of 0-tangential bodies.

Proposition 3.1. Let K,E ∈ Kn0 , E ⊂ K, let γ1, . . . , γn be the roots of
fK;E(z) and let p ∈ {1, . . . , n−1}. Then K is a p-tangential body of E if and
only if there exist constants αj, j = 1, . . . , p, with 0 < αp < 1 such that the
γi’s are the roots of the polynomial gα,p(z) = (z + 1)n −

∑p−1
k=0

(
n
k

)
αp−kz

n−k.

Proof. If K ∈ Kn0 is a p-tangential body of E, Theorem 3.1 asserts that
W0(K;E) = Wi(K;E), for all i = 1, . . . , n− p, and so we may write

fK;E(z) = W0(K;E)

n−p∑
i=0

(
n

i

)
zi +

n∑
i=n−p+1

(
n

i

)
Wi(K;E)
W0(K;E)

zi


= W0(K;E)

[
(z + 1)n −

p−1∑
k=0

(
n

k

)(
1− Wn−k(K;E)

W0(K;E)

)
zn−k

]
.

Thus, setting αp−k = 1 −Wn−k(K;E)/W0(K;E), k = 0, . . . , p − 1, all γi’s
are roots of the polynomial gα,p(z). Since αp = 1− vol(E)/vol(K) we have
by our assumption E ⊂ K that 0 < αp < 1.

Conversely, we now assume that there exist p constants αj , j = 1, . . . , p,
0 < αp < 1, such that the γi’s are the roots of gα,p(z). Since αp < 1 the
polynomial gα,p(z) is of degree n. Hence the γi’s are roots of the polynomial

(z + 1)n −
p−1∑
k=0

(
n

k

)
αp−kz

n−k =

n−p∑
i=0

(
n

i

)
zi +

n∑
i=n−p+1

(
n

i

)
(1− αp+i−n)zi


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as well as of fK;E(z) =
∑n

i=0

(
n
i

)
Wi(K;E)zi. So both polynomials have the

same coefficients up to a constant c, say. Since αp < 1 we have c > 0 and
by comparing the coefficients we get

W0(K;E) = W1(K;E) = · · · = Wn−p(K;E) = c.

Theorem 3.1 now ensures that K is a p-tangential body of E. �

We note that the constants αj ’s in the theorem above actually satisfy
0 < α1 ≤ · · · ≤ αp < 1, which follows directly from (3.1) since r(K;E) = 1.

In the particular case of cap-bodies (1-tangential bodies) the characteri-
zation is more explicit.

Corollary 3.1. Let K,E ∈ Kn0 , E ⊂ K, and let γ1, . . . , γn be the roots of
fK;E(z). Then K is a cap-body of E if and only if there exists α ∈ (0, 1)
such that (1/α)1/n(1 + 1/γi), i = 1, . . . , n, are the n roots of unity.

Proof. Proposition 3.1 states that K is a 1-tangential body of E if and only
if there exists α ∈ (0, 1) such that γk, k = 1, . . . , n, satisfy the equation
(z + 1)n = αzn. Since W0(K,E) > 0 no root of fK;E(z) can be zero and so
we have equivalently (1 + 1/z)n = α. Therefore, K is a 1-tangential body
of E if and only if

(3.2) 1 +
1
γk

= α1/n e
2π(k−1)

n
i, for k = 1, . . . , n

and some α ∈ (0, 1). �

Remark 3.1. Obviously, with (3.2) we can explicitly determine the roots of
the Steiner polynomial of a cap-body K of E, namely

(3.3) γk =
−1 + β cos 2π(k−1)

n − β sin 2π(k−1)
n i

1 + β
(
β − 2 cos 2π(k−1)

n

) , k = 1, . . . , n,

with β = α1/n =
(
1−vol(E)/vol(K)

)1/n. Figure 2 shows in a thicker line all
roots in R(3, B3) of Steiner polynomials of cap-bodies of B3 (cf. Figure 1).

-2 -1.5 -1 -0.5

0.2

0.4

0.6

0.8

Figure 2. Complex numbers z ∈ C+ which are roots of
fK;B3(z) for any cap-body K of B3.
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II. On constant width sets. Next we deal with the family of constant
width sets, for which we get a symmetry condition on the roots of their
Steiner polynomials. A convex body K is called a constant width set if it
has the same breath (say b) in any direction, i.e., the distance between any
two parallel supporting hyperplanes is b.

In order to establish this symmetry condition we need the following gen-
eral result on polynomials.

Lemma 3.1. Let f(z) = a0 + a1z + · · · + anz
n be a real polynomial with

an 6= 0 and let b ∈ R. Then

(3.4) an−k =
k∑
i=0

(−1)i
(
n− i
n− k

)
bk−ian−i

for k = 0, 1, . . . , n, if and only if all the roots of f(z) are symmetric with
respect to −b/2, i.e., γ is a root if and only if −b− γ is a root.

Proof. The polynomial f(−b− z) is given by

f(−b− z) =
n∑
k=0

ak(−b− z)k =
n∑
k=0

ak(−1)k
(

k∑
i=0

(
k

i

)
bk−izi

)

=
n∑
k=0

(
n∑

m=k

am(−1)m
(
m

k

)
bm−k

)
zk

=
n∑
k=0

(
n−k∑
l=0

an−l(−1)n−l
(
n− l
k

)
bn−k−l

)
zk

= (−1)n
n∑
k=0

(
n−k∑
l=0

an−l(−1)l
(
n− l
k

)
bn−k−l

)
zk.

(3.5)

The leading coefficient is (−1)n an and thus the two polynomials f(z) and
f(−b− z) have the same roots if and only if f(z) = (−1)nf(−b− z), i.e., if
and only if the relations (3.4) hold for all k = 0, 1, . . . , n. �

As a direct consequence we get the following statement for Steiner poly-
nomials.

Theorem 3.2. Let b > 0. A convex body K ∈ Kn verifies the relations

(3.6) Wn−k(K;E) =
k∑
i=0

(−1)i
(
k

i

)
bk−iWn−i(K;E)

for k = 0, 1, . . . , n, if and only if all the roots of its Steiner polynomial
fK;E(z) are symmetric with respect to −b/2.

Proof. Since (
n

k

)(
k

i

)
=
(
n

i

)(
n− i
n− k

)
for i ≤ k,

the result follows immediately from Lemma 3.1. �
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Observe that the equations (3.6) are not independent, since they are
equivalent to the (n+ 1)/2 relations obtained for only odd values of k.

Notice also that symmetry with respect to b/2 ≥ 0 in Theorem 3.2 is
not possible. Indeed, for b = 0 we would get that all odd quermassintegrals
have to vanish which is not possible, and in the case b > 0 it would imply
that Wj(K;E) = 0 for all j = 1, . . . , n, again not possible.

When E = Bn, it is known (see [4]) that bodies of constant width fulfill
(3.6), which shows Proposition 1.2.

In particular, if n = 3 the roots of the Steiner polynomial of the constant
width set K are

γ1 = −b
2
, γ2, γ3 = −b

2
±
√

3
2

√
b2 − 3W1(K)

π
,

which are real, since πb2 ≥ 3W1(K) (cf. (2.1); see also [8, Example 3]).
Notice that if (3.6) holds and the dimension is odd then −b/2 is a root

of fK;E(z), whereas if n is even and −b/2 is a root of fK;E(z), then it has
to be at least a double root.

III. Balls and sausages. Finally we consider for K balls (more generally
the gauge body E) and sausages. The gauge body E can be seen both as a
very special tangential body (it is a 0-tangential body of E) and as a very
particular case of a body satisfying (3.6). It can be also characterized in a
more general way:

Proposition 3.2. Let K ∈ Kn, let γi, i = 1, . . . , n, be the roots of fK;E(z),
and let a > 0. Then

∣∣Re(γi)
∣∣ = a > 0 for all i = 1, . . . , n if and only if

K = aE (up to translations).

Proof. If K = aE, then fK;E(z) = Wn(K;E)(z + a)n, and hence it has an
n-fold real root γ = −a. So let us assume

∣∣Re(γi)
∣∣ = a for i = 1, . . . , n.

From fK;E(z) = Wn(K;E)
∏n
i=1(z − γi) we get the relations

−ma =
n∑
i=1

Re(γi) =
n∑
i=1

γi = −nWn−1(K;E)
Wn(K;E)

,

n∏
i=1

γi = (−1)n
W0(K;E)
Wn(K;E)

,

for some 1 ≤ m ≤ n. We note that we can exclude the case m = 0, because
a > 0 implies K ∈ Kn0 and thus Wn−1(K;E) 6= 0. Hence

(3.7)
W0(K;E)
Wn(K;E)

=
n∏
i=1

|γi| ≥ an =
(
n

m

Wn−1(K;E)
Wn(K;E)

)n
≥ Wn−1(K;E)n

Wn(K;E)n
,

i.e., Wn(K;E)n−1W0(K;E) ≥Wn−1(K;E)n. However Minkowski’s first in-
equality states that Wn(K;E)n−1W0(K;E) ≤ Wn−1(K;E)n, where equal-
ity holds for K,E ∈ Kn0 if and only if K and E are homothetic (see e.g. [19,
p. 317]). Thus there exist α > 0 and t ∈ Rn such that K = αE + t. From
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an = W0(K;E)/Wn(K;E) we get α = a, and, in particular, m = n and
γi = −a for all i = 1, . . . , n. �

Theorem 1.3 will be a direct consequence of the following result for which
we denote by f (n−1)

K;Bn
(z) the (n− 1)-st derivative of fK;Bn(z).

Theorem 3.3. Let K ∈ Kn. Then −r(K) is root of f (n−1)
K;Bn

(z) and all
its 2-dimensional projections onto any 2-dimensional linear subspace have
inradius r(K) if and only K is a sausage with inradius r(K).

Proof of Theorem 3.3. First we need some additional notation. The set of
all k-dimensional linear subspaces of Rn will be denoted by Lnk , and for
L ∈ Lnk and K ∈ Kn, K|L denotes the orthogonal projection of K onto L.
Finally, W(k)

i denotes the i-th quermassintegral computed in a k-dimensional
affine subspace.

The quermassintegrals of a sausage S = L+rBn, where L is a line segment
with length `, are given by

Wk(S) = rn−k−1

[
n− k
n

voln−1(Bn−1) `+ vol(Bn) r
]
.

Here volj(M) denotes the j-dimensional volume of M ⊂ Rj . Thus it can be
easily checked that −r = −r(S) is an (n− 1)-fold root of fS;Bn(z) and so a
root of its (n− 1)-st derivative.

So we assume that −r = −r(K) is root of f (n−1)
K;Bn

(z), i.e.,

(3.8) Wn−2(K)−2rWn−1(K)+ r2Wn(K) = 0,

and let r(K|L;Bn ∩L) = r(K) for all projections onto 2-dimensional planes
L ∈ Ln2 . Let k ∈ {1, . . . , n}. Kubota’s integral recursion formula states that
for any i = 0, . . . , k, the (n− k+ i)-th quermassintegral Wn−k+i(K) can be
expressed as

(3.9) Wn−k+i(K) =
vol(Bn)
volk(Bk)

∫
Lnk

W(k)

i (K|L) dσ(L),

where σ(L) is the Haar measure on the set Lnk such that σ(Lnk) = 1 (see e.g.
[19, p. 295, (5.3.27)]).

Let k = 2 and L ∈ Ln2 . The Steiner polynomial of K|L as a 2-dimensional
set is given by fK|L;B2

(z) =
∑2

i=0

(
2
i

)
W(2)

i (K|L)zi. Applying (3.9) we get∫
Ln2
fK|L;B2

(−r) dσ(L)=
∫
Ln2

W(2)
0 (K|L) dσ(L)− 2r

∫
Ln2

W(2)
1 (K|L) dσ(L)

+ r2

∫
Ln2

W(2)
2 (K|L) dσ(L)

=
vol2(B2)
vol(Bn)

[
Wn−2(K)−2rWn−1(K)+ r2Wn(K)

]
= 0
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by (3.8). Since r = r(K|L;Bn ∩L) for all L ∈ Ln2 , Bonnesen’s inequality (cf.
(1.4)) states that

(3.10) fK|L;B2
(−r) = W(2)

0 (K|L)− 2W(2)
1 (K|L)r + W(2)

2 (K|L)r2 ≤ 0,

with equality if and only if K|L is a 2-dimensional sausage with inradius r.
Thus, from ∫

Ln2
fK|L;B2

(−r) dσ(L) = 0

and (3.10) we conclude fK|L;B2
(−r) = 0 for any L ∈ Ln2 which implies that

K|L is a 2-dimensional sausage with inradius r for any L ∈ Ln2 . By [19,
Lemma 3.2.6] this is equivalent to K being an n-dimensional sausage with
inradius r. �
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[9] M. A. Hernández Cifre, E. Saoŕın, Some geometric properties of the roots of the

Steiner polynomial, Rend. Circ. Mat. Palermo 77 (II) (2006), 319–332.
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